E-mail Content Scanning with Exim 4

Complete Notes from the 2005 Exim Course
Updated Date: 14 July 2005

©2005 Tim Jackson (tim@timj.co.uk)

Introduction

Earlier parts of the Exim course reviewed how ACLs and conditions can be used in many powerful
ways that don't involve checking the actual content of a message; for example, DNS-based
blacklists (DNSBLs) and checks on the sender address. These checks are (usually) relatively
'cheap' in terms of resources, and can provide a powerful framework for protecting against spam,
viruses and other unwanted messages. However, there is frequently a requirement for doing checks
which extend beyond variables related to the message envelope and connection, and into the
message body itself.

Here, we'll examine some of the issues involved in message content scanning, including:

+ Content scanning at the MTA — pros and cons of this option

+ Methods of implementing content scanning — some of the options available
+ Software required to implement content scanning with Exim

+ A brief overview of common external scanning software

+ Alook at the Exim Content Scanning Extension

- Some other considerations and example configurations

Basic Rationale & Considerations

The basic rationale to content scanning is usually obvious: to reduce the amount of spam and
viruses transmitted by e-mail. However, performing such checks effectively does very often mean
venturing into the message body.

Typically, content checks are more 'expensive' than checking the basic variables already
mentioned, not least because they frequently involve external tools such as virus scanners. So,
content scanning should be used as a last resort, rather than as the default way of blocking
unwanted mail. It's likely to be much more efficient both from a bandwidth and CPU load point of
view to, for example, check hosts delivering incoming messages against trusted DNS blacklists and
reject as much as possible at SMTP RCPT stage, rather than allowing all messages to be received
in their entirety and then make rejection decisions based on content.

Whilst most 'security' or other checks on inbound mail involve a certain amount of consideration of
policy issues beyond merely technical considerations, content scanning has, perhaps, more than
most. Some people are sensitive about their mails being examined and reported on, even if it is
merely by a computer program. The many colourful variations of language and context can take
their toll on any attempt to make sense of them by a computer. Furthermore, some care needs to
be taken if content checks are not in fact to worsen the problems they are intended to solve.

Inbuilt methods for content scanning

There are two primary methods of implementing content scanning: at the SMTP protocol stage and
after a message has been accepted. Using Exim's core built-in methods, you can implement
scanning at the SMTP protocol stage using ACLs; specifically the DATA ACL where you can check,
for example, the $message_body variable in a condition and make decisions based on it. Once a
message has been accepted, Exim or Sieve filters can be used to affect the delivery of a message

including making decisions based on its content.

Some common external content scanning software

Exim's standard internal ACLs and filters have already been discussed on this course, so | will focus
primarily on the use of “external” content scanning tools, particularly the Content Scanning
Extension for Exim which allows the use of many common pieces of content scanning software.
Inevitably in these days of inboxes choked with junk, the primary concern of many people is
stopping spam and viruses, so software typically used includes:

« SpamAssassin — a Free software spam checker

« Clam Antivirus — a Free software virus scanner

+ Sophos — a commercial virus scanner, normally used together with 'sophie’, a Free software
daemon

Content scanning at the MTA

So, given that we are considering Exim, we need to look first at the implications of using an MTA
such as Exim to implement content scanning. Let's not forget that the use of an MTA is not required
by any means; in fact, it's unusual in some respects, since a mail transport agent is normally
responsible solely for, as its name suggests, moving mail from one place to another without taking
any action based on its contents. Indeed, in common with other elements of e-mail infrastructure
and terminology, the analogy with traditional postal services holds true: their job is to transport mail
from one place to another, not to open and inspect it along the way.

However, it's worth bearing in mind when considering the options available that many end-user
software packages (MUAs) have content scanning options of one kind or another built in, whether
it's simple filtering or Bayesian anti-spam learning and filtering.

Looking then at the advantages and disadvantages of content scanning at the MTA:

Advantages

+ Centralised — easy to apply consistently across large user populations. In any large
environment, deploying suitable content scanning software to end users can be a challenge, but
with the constant changing and improving of techniques, maintaining up-to-date software for a
large number of users may be at best impractical.

« Transparent — no need for end users to install or configure software, or to learn about content
scanning. If there is such thing as an “average non-technical user”, he/she is probably not
particularly interested in learning about spam filters for example — they just want a mailbox free
of junk.

- Easy to maintain — all in one place. Modifications and upgrades can be instantly applied.

Disadvantages

+ Confuses the role of an MTA, which normally only transports mail rather than taking action based
on its content

+ Can be a blunt instrument, takes control away from users (although this cuts both ways as
mentioned earlier)

- Centralises burden on mail servers — resource usage needs to be considered. Content scanning
(depending on what is required and what software is used) can potentially add a significant load
overhead as opposed to merely delivering mail.

Two primary ways to implement content scanning

As touched on earlier, there are two primary methodology choices when implementing content
scanning at the MTA:

+ Accept-and-scan — accept the message at SMTP time, then process content and make decisions
at a later point in time

+ SMTP-time scanning — scan the message “live” during the SMTP session and do not even
accept.

Each method has distinct characteristics along with advantages and disadvantages, which we'll look
at in more detail. Before we carry on, one important thing to bear in mind at all time is that a
message can have multiple recipients. It may sound obvious, but a lot of fruitless discussion often
takes place making simplistic assumptions such as that there is a one-to-one relationship between
messages and recipients (at least on any given server). This may often be the case in practice,
especially with the widespread adoption of VERP-based mailing lists, but we cannot assume this
(except in some unusual cases which will be discussed later).

Accept-and-scan

Because we accept the message at SMTP time, we have more flexibility over what to do with it.
Using Exim's internal methods, we can use filters to make decisions on delivery. Decisions could
range from bouncing the message, to discarding it, forwarding it or perhaps delivering to different
folders according to the content (e.g. saving suspect spam to a separate folder to “normal” mail).
Alternatively, if the use of software such as SpamAssassin is required, a router can be used which
passes the message out to SpamAssassin and, depending on the result, typically either fails it
(generating a bounce) or re-injects it into Exim, using a marker (such as the 'protocol' option) to
prevent a scanning loop.

The primary advantages of the accept-and-scan method are firstly that it can be achieved without
any special extensions to Exim. Furthermore, it's relatively easy to allow detailed per-recipient
configuration. For example, some recipients might choose spam scanning whilst others might opt
out of it. Specific configurations for each user could be provided; for example, SpamAssassin's rules
and scores could be adjusted on an individual basis.

However, accept-and-scan has some major disadvantages. By far the biggest one is simply the
question of what to do if a message is detected as unwanted (i.e. spam). If your intention is to
simply tag or mark the message and perhaps deliver into a separate mailbox, then there's no
problem — except that the recipient ultimately still gets the spam/virus. However, if (as is common)
you want to reject the message, you are in a sticky situation. You could:

a) Drop (blackhole) it silently — this makes for an unreliable mail system. The sender will never
know their mail didn't reach it's destination, and the recipient will have no idea the mail ever
existed. OK so long as you are confident that your classification system will never incorrectly
decide that a message should be discarded, but otherwise not recommended, and it helps
reinforce the impression amongst end-users that e-mail is unreliable (which, in practice, it
shouldn't be — so long as it's configured correctly — there are clear hand-offs of responsibility at
each stage).

or

b) Create a bounce — this is the “traditional” way for an MTA to deal with mail it cannot deliver, and
what commonly ends up happening, but is now very bad practice in the current climate where
most senders are faked, except where absolutely necessary. The problem is that you will often
end up “collateral spamming” innocent third parties who did nothing wrong and were entirely
unconnected to the problematic mail. By doing this, you are adding to the problem and effectively
shifting the burden of unwanted mail from yourself to someone else. Aside from the fact that the
third party victim may well be getting mailbombed with fake bounces if their address is being

widely forged, it's likely to be even harder for them to detect the mail as junk and discard it
themselves if you've mashed it up by wrapping (and probably truncating) it in a bounce message.
However, even if the (faked) sender doesn't exist, you will add load to some innocent party's
systems (whoever happens to be running the domain mail exchanger for the faked sender
address domain), and your queues will fill up with frozen bounces.

So | must encourage you in the strongest terms to not generate bounce messages for unwanted
mail. If you decide that accept-and-scan is for you (and | hope to offer compelling reasons why there
is a better solution), then please be satisfied with tagging or redelivering messages, rather than
bouncing. At worst, ditch messages you don't want — but don't be surprised when your users and
their correspondents complain about an unreliable service.

Finally, another disadvantage of the accept-and-scan method is that you may well end up scanning
a message multiple times — one for each recipient. This is of course what gives you the flexibility to
have per-recipient configurations which is great, but if in fact your users have the same rules then
you may expend resources needlessly rescanning mail.

SMTP-time scanning

SMTP-time scanning is a relatively new variation on the creative use of SMTP, but one which has a
lot of merits and is gaining support, particularly amongst Exim users due to the ease of integration.
The concept is to scan during the SMTP DATA phase, whilst the session is still open and before the
receiving server has issued an SMTP confirmation response (at which point it accepts responsibility
for the message, leading to the previously-discussed problems with accept-and-scan). If the
message is deemed to be unacceptable for whatever reason (looks like spam, contains a virus etc.)
then an SMTP code in the 500 series (permanent failure) is issued. There are a number of reasons
why this approach has distinct advantages over accept-and-scan:

- Elegance: there is a certain logic in saying that if you're not going to accept a message, it's better
to reject it outright at the earliest stage possible rather than accept and then bounce.
+ Reduces collateral spam. This is a major consideration, as it minimises the problem of
generating bounces as discussed earlier with accept-and-scan. Since you reject unwanted mail
at SMTP time, your server never generates a bounce message. (Any message that is to be
passed to the sender is sent as part of the SMTP response). Now, at worst this will mean a
similar result to accept-and-scan: the sending server will see the SMTP 5xx rejection, and
generate its own bounce, which may well go back to an innocent third party. Superficially
therefore, you may fail to see the advantage. However, there are two key points to bear in mind:
« Above all, a very large amount of spam and viruses are “direct-to-MX”, meaning that the mail
is sent directly from the source (typically a spammer with bulk mail software, or a small SMTP
engine contained within a virus on a compromised machine). In these cases, the sending
client is not a “real” MTA and is almost certain not to generate bounce messages

- Even if the worst case occurs, and the spam has passed through an intermediate “real” MTA
and a bounce is generated, you have done all that you can to stop being part of the problem.
You can't help it if someone else has accepted the “bad” mail and is then forced to generate a
bounce, but you have ensured that you are not generating collateral spam yourself. Perhaps
eventually the operator of the server the mail passed through prior to reaching you will install
the same level of junk protection as you have, thus pushing the problem further and further
upstream and closer to the source of the mail. This can only be a good thing.

« No more queues filled with bounces. You shouldn't have undeliverable bounces sitting around on
your queues any more except in rare cases where you have been forced to accept a mail which
you subsequently pass on via SMTP and it is rejected for some reason. Hopefully you can
minimise the instances of this if it affects you using recipient callouts or suchlike, but either way
you will have taken a major step towards reducing the problem.

There are, however, some disadvantages that need to be considered.

Requires enough resources to scan quickly & return back to the SMTP session rather than being
able to scan at your leisure according to available resources. The difficulty of this depends on
your load and the hardware which you have available. You do not want to unduly delay mail at
the DATA stage and this is advised against by the RFCs (see RFC2821 s6.1 and RFC1047).
However, many people are finding that scanning and returning a response within a few seconds
or so is not a problem — which is insignificant on the scale of things (RFC2821 s.4.5.3 specifies
that senders should wait up to 10 minutes for a response, though some servers do not wait
nearly so long). If you take an undue amount of time to respond, there is always a slight risk that
the message may be delivered more than once due to a synchronisation error — if the sending
client times out and keeps retrying a message, whilst in fact the receiving end does deliver the
message, but the confirmation does not reach the client in time.

Per-user configuration options are limited. An important point which is often overlooked by those
new to SMTP-time content scanning is that although a message may have multiple recipients
within a single SMTP session, there is only one opportunity to reply 'yes' or 'no' at the DATA
stage. Therefore, content scanning normally only takes place once per message, not per
recipient. (There are some workarounds to this, which we will come to later).

Given the benefits, and the huge problem of collateral spam, we will focus primarily on SMTP-time
scanning.

Software Required

We'll now take a look at the software required to implement content-scanning using external
software.

The main pieces of software that are required as follows:

« Exim :-)

+ Content-scanning “glue” to pass the mail from Exim to the external software and return a result.
The Exim local_scan interface was initially intended for applications of this type, and is used by
some software such as SA-Exim. However, since v4.50, the standard Exim distribution has
included special ACL features (Content Scanning Extensions) which enable the passing of
messages to many scanners. Before v4.50, these are available via a source code patch called
“Exiscan”.

+ Scanning software (virus/spam scanners etc.)

- Should be daemonised if possible for performance. The overhead of reloading (for example)
an entire virus database every time you want to scan a message can be huge compared with
a memory-resident daemon which loads the patterns once and handles an indefinite number
of 'scan requests' over time.

However, before diving in, consider the policies to be implemented as well as the tools to do it.
There is a lot more subtlety in the infinite variety of policy choices to be made compared to the tools
available, though it's also important to decide what you want to achieve so that you can choose the
right software and methods. For example, a simple policy might state:

+ Reject all mails containing attachments that end in .pif/.scr/.bat/.com/.exe
+ Reject all mails containing viruses detected by the XYZ virus scanner

+ Reject all mails which score more than ten SpamAssassin points

+ Reject all of the above at SMTP time

Content-scanning glue: overview

- Exim Content Scanning Extension (from v4.50; formerly called “Exiscan”) — this is the “Swiss
army knife” of content scanning for Exim and includes support for a number of external anti-
spam/anti-virus tools including SpamAssassin, Sophos/sophie, Kaspersky, ClamAV and
Brightmail. It also includes a generic command line scanner plugin allowing arbitrary virus
scanners to be used. The Content Scanning Extension is able to operate not only on the content
of messages, but decode MIME and uuencoded parts within messages. This can be useful for a
number of purposes. Operates in the ACL system.

« SA-Exim — single-purpose spam-scanning patch for SpamAssassin. Extensive & detailed
functionality though increasingly most can be done with Content Scanning Extension. Includes
'greylisting’, 'tarpitting' and more. Operates using the local_scan system and separate
configuration file.

http://marc.merlins.org/linux/exim/sa.html

Scanning Software
Anti-virus

Clam Antivirus

Clam Antivirus is a package that first started making news a couple of years ago. Originally vaguely
inspired by (and sharing some virus definitions with) the Open Antivirus project, it's become the de-
facto standard Free software virus scanner which has a lot going for it. Whilst as with all Free

software projects, it's community-supported and there's no helpline to call, in practice experience
with recent virus threats has shown that virus signatures have appeared quickly (even quicker than
some commercial virus scanners in some cases! The authors claim that responses are often within
an hour of a virus outbreak being recognised) and detection is good.

Clam comes with a daemon (clamd) which is a great help in making it useful without consuming
excessive resources. There is also a separate daemon (freshclam) which monitors for virus
signature updates and can download and install them automatically.

Some people have reported scalability and stability issues, though many are reported to use it
successfully in environments processing a significant amount of mail. A freely available variation on
the clamd daemon, called 'nclamd', uses pre-forking processes rather than threads and is claimed
to be more robust. The Clam authors did indicate at one point that they would probably merge an
option for fork-based processes into the main package at some point, although the tracking down
and elimination of some memory leaks seems to have put this idea onto the back burner, and
indeed nclamd itself has not been updated since January 2004.

Sophos

Sophos is a commercial virus scanner from a UK-based company of the same name. The usual
pros/cons apply: it's closed-source which can be problematic from a practical point of view on open-
source operating systems (for example, platforms supported are limited, and you can't recompile if
there are library or other dependency issues) as well as (to some people) from a philosophical point
of view. It naturally costs real money, but at the same time you get real people you can phone up
and speak to.

The software doesn't include a memory-resident daemon, but a widely-used and stable Free
software daemon called 'sophie' (http://www.clanfield.info/sophie/) which is dedicated to this
purpose works well in conjunction with the shared library provided by Sophos (libsavi).

Others

There are a multitude of scanners out there, both commercial and free, including Kaspersky,
ScannerDaemon and others. Take your pick, though it's worth considering which are supported
directly by Exim's Content Scanning Extension if you're planning on using that.

Anti-spam

SpamAssassin

By far the most common tool in use today is the ubiquitous SpamAssassin, which you will almost
inevitably have heard of. SpamAssassin is a Perl-based scanner which includes both command
line tools and a daemon for checking e-mail for signs of spam.

It primarily consists of a large base of pattern-matching rules, but includes a lot of other checks
such as checking mail servers that the mail has passed through against DNS blacklists or even
comparing the content against distributed checksum databases such as Razor. Most powerful,
however, is SpamAssassin's Bayesian learning techniques, which allow you to “train” it what is
spam and what's not, and it will use the data you give it in predicting the likelihood of future mails
being spam or not. The Bayesian system alone is extremely effective if trained well, even in the face
of “Bayes poison” attacks where spammers include lots of garbage words in their e-mails (often
hidden) in order to try to disrupt the statistics behind Bayes techniques.

The basic premise of SpamAssassin is a scoring system, where each “rule” which is hit by a
particular mail adds a certain “score” to the total. The scores added for each rule vary considerably
and can be customised. Decisions can then be made on what to do with the mail according to the

score. Typically, the scores are used to “flag” mails as being possible spam if they exceed a modest
score (say, 5) and reject mails outright that exceed a high score (say, 10-12). “Flagging” can consist
of changing the Subject line, adding extra headers to the mail or even rewriting the body to warn the
recipient that it was detected as spam and include the spam as an attachment (the latter works with
SA-Exim but not the Content Scanning Extensions). Note that SpamAssassin itself does not
implement any of the policy (e.g. rejection); it merely analyses the mail.

One thing worth bearing in mind is that SpamAssassin's popularity is also its greatest weakness:
whilst it was extraordinarily effective back in time, it's widespread use and the growing
sophistication of spammers means that many spammers are now good at crafting their junk such
that it evades SpamAssassin's filters. This not only makes the Bayesian learning all the more
important, but also means that you should be prepared to at the least keep an eye on the “add on”
rulesets that are available (many superb ones at http://www.rulesemporium.com) and probably be
prepared to write your own rules from time to time (this is very easy if you are familiar with regular
expressions).

Others

Partly due to the problems of spammers evading SpamAssassin, interest in alternative solutions is
growing. Other tools that can be used include spamprobe, bogofilter, dspam and CRM114. Whilst
it's certainly possible to do useful things with these in conjunction with Exim, none of them are quite
so easy to integrate as SpamAssassin at the current time.

Exim Content Scanning Extension

We'll look at Exim's built-in Content Scanning Extension in a little more detail now, since it's so
important if you're considering content scanning with Exim.

As mentioned earlier, it was originally a separate project called Exiscan, but has been merged since
v4.50. Itis still maintained by its original author, Tom Kistner of Astaro Internet Security. To enable
it, you must compile Exim using the build-time WITH_CONTENT_SCAN option enabled in your
Makefile. You may also want to use the WITH_OLD_DEMIME option, discussed later. These
options (or at least WITH_CONTENT_SCAN) are frequently enabled in binary distributions (RPMs,
DEBs etc.)

Unlike some other solutions such as SA-Exim, the Content Scanning Extension bypasses the
local_scan interface provided by Philip to hook into the message processing system, and instead
integrates tightly with Exim by hooking into the ACL system.

So, what does the extension actually provide?

« New options in DATA ACL to call external scanning software.

Inbuilt MIME decoder. Whereas Exim as an MTA itself deals with message bodies solely as
whole parts with little regard to the semantics of them, the Content Scanning Extension can
decode individual parts, attachments etc. and take action based on that.

- MIME checking to detect serious MIME errors (often indicative of malware) — MIME decoders
in mail user agents vary considerably in their tolerance of malformed MIME. This has been
exploited in the past by malware, so blocking some

- File extension matching (e.g. to block all .pif files). There is a specific option in the Content
Scanning Extension called “demime” to serve this purpose, although with recent versions it
has been generalised with the provision of an attachment filename variable and the MIME
ACL. The “demime” variant is officially deprecated and needs to be specifically enabled using
the WITH_OLD_DEMIME build-time option, but is planned to remain in Exim indefinitely.

- Regular expression matching of decoded or raw MIME parts.

« New ACL: acl_smtp_mime — called once per MIME part. Unusual in the ACL system, it
doesn't correspond directly to a particular stage of the SMTP transaction; rather, there is an

interaction with the DATA command. The MIME ACL is run before the DATA ACL, and a
'deny" in the MIME ACL will cause the DATA command to be rejected outright.

The MIME ACL provides a number of new variables including $mime_content_type,
$mime_filename and many more. These can be used for any purpose you can conceive; the
most obvious is file extension blocking as mentioned but also, for example, some viruses
have been included as attachments with fixed (and unusual) filenames, so you could use a
condition involving the $mime_filename variable to reject them.

Some brief Content Scanning Extension examples

As with the Exim ACL system in general, there is an enormous amount of flexibility and therefore
the precise details of how you use it will vary considerably according to exactly what you want to do.
The best thing to do is use the documentation & examples from the Exim manual and decide what
your precise policies are. Nevertheless, to give a brief taster of some of the simple uses:

Reject spam
A simple example of calling SpamAssassin as user 'nobody' from the DATA ACL and limiting the
scanning to messages under 80kB would be as follows:

deny message = This message was classed as spam
condition ${if <{Smessage size} {80k} {1}{0}}
spam = nobody

This will, however, reject all messages marked as spam by SpamAssassin. In practice you'll
probably want to make use of the $spam_score_int variable (which contains the SpamAssassin
score multiplied by 10) to only reject mail over a certain score, allowing “grey area” mails which look
like spam but only scored a modest number of points to pass. For example, a condition which
would reject mails with a spam score of over 9.9:

condition = ${if >{$spam score int}{99}{1}{0}}

Reject viruses

The use of this will vary according to whether you have a virus scanner that has a reliable internal
MIME decoder. Many do, in which case you can just pass the entire message body to it using the
DATA ACL. (If you are using ClamAV, enable the ScanMail option). If not, you can use the Content
Scanning Extension's in-built MIME decoding in the MIME ACL.

deny message = Message contains a virus ($malware name)
malware = *
MIME checking

The $demime reason and $demime errorlevel variables can be used in the detection and
rejection of malformed MIME messages. An example, used in the DATA ACL would be:

deny message = Serious MIME defect detected (Sdemime reason)
demime = *
condition = ${if >{Sdemime errorlevel}{2}{1}{0}}

Other considerations

There are a couple of problems in particular that are often raised in conjunction with content
scanning. We'll take a brief look at a couple of them, along with an example of a common usage
scenario.

The MX problem

The “MX problem” is a problem introduced where you have more than one public-facing mail server,
and the mail servers do not give identical responses to a similar SMTP session. For example, if one
mail server has DNSBL lookups and content scanning, and the other does not.

The main potential problems are:

+ Creating a spam 'back-door’
« Creating collateral spam

This problem is not specific to content scanning, since it applies to any other policy rejection that
takes place at SMTP time (including, for example, DNSBL lookups applied at RCPT time and even
rejection of invalid recipients), it's worth a brief mention since the implementation of content
scanning often goes alongside more stringent SMTP-time checks in general, and these usually
overshadow the “invalid recipient” case by some amount.

Creating a spam back-door

Consider the case of an e-mail which is sent to your primary MX server. Let's assume it was
rejected at RCPT time due to the sender being listed on a DNS blacklist. Or, perhaps, even if it
passed that check, it might be rejected at DATA time due to SpamAssassin rating, perhaps taking
into account a number of factors including servers which the mail passed through before reaching
yours (based on the Received headers), and the content of the mail.

Now, consider the same mail sent to a “dumb forwarder”; a traditional “backup MX” in other words,
which accepts any mail sent to the domains it is configured to handle. The server would accept the
mail, and then forward it to the primary MX. However, the primary MX has now lost the ability to do
meaningful DNSBL checks, because the “source” is now no longer the spammer's machine but your
(trusted) secondary mail server. Similarly, it's conceivable that the SpamAssassin rating might be
different for the same reasons, perhaps pulling the mail under the threshold for rejection.

So, what this means is that you have created a “back-door” to your mail system: a mail sent to your
“backup MX” rather than your primary server may now reach it's intended recipient even though it
would normally have failed. Some spammers are known to exploit this common mistake by missing
the primary MX altogether and targeting secondary MXes.

Creating collateral spam

The problem doesn't end there. Even if your primary MX manages to reject the unwanted mail,
perhaps at DATA time, your secondary MX is left in the situation that we discussed earlier — it has
“spam in hand” and has to create a non-delivery report for it. If the sender of the spam is forged,
this means creating collateral spam to an innocent third party — again, bad practice.

The solution

Firstly, consider whether you really need multiple MXes. If you only have one “ultimate endpoint”

machine, then multiple MXes don't generally give a lot of benefit unless your “ultimate endpoint” is
inaccessible to the Internet at large for long periods of time (say, several days). Although having a
“backup MX” does mean you can accept mail whilst the primary server is down, and perhaps then

receive that mail more quickly when the endpoint server comes back up (since you can flush the
queue on the secondary, or have an aggressive retry pattern), this is often a relatively small benefit
compared to problems you cause.

If you must have more than one MX, then the key point to remember is that you should engineer
your systems such that every mail server gives out identical responses. Protect each machine with
equal strength to ensure that you don't introduce back-doors or generate collateral spam.

The multiple-recipient problem

Hopefully you will have been inspired by the methods discussed today. However, one practical
question which is often raised as soon as people try to implement content scanning is this: “How do
| allow users to have different preferences or opt in/out of scanning?”.

The answer, unfortunately, is not simple. For SMTP-time scanning, we are limited by the
constraints of the SMTP protocol. As mentioned earlier, although a message may have multiple
recipients, you can only return one result to the DATA command which will apply to all the
recipients. Clearly, as a limitation of the protocol, there is no easy way around this problem.
However, there are reasonable workarounds and it therefore should rarely be an obstacle in the
way of implementing content scanning at SMTP time.

The first thing to do is make sure you're solving the “right” problem. Why is it that some users need
different scanning options? Do they really need different scanning options, or are there (global)
changes that you could make so that everyone is happy? If not, and if the options are on a per-
domain basis rather than per-user, could you set up a separate server for
customers/users/departments that don't want their mail scanned, or want a different (global) option?
(You would then point the MX records for the domain in question to the other machine).

Failing all that, if you decide you really do need to implement multiple scanning options on a single
machine, the main thing to do is to try to limit the number of variations, as this will make
workarounds more viable. Even if “one size doesn't fit all”’, maybe “two sizes” do? (e.g. Scanning
on/off).

The main workaround is to defer one or more recipients in each SMTP session, so that each
session only contains recipients with the same scanning preferences. There are a number of ways
to do this. The most simplistic is obviously to restrict each SMTP session to a single recipient, and
defer subsequent recipients using the RCPT ACL. This is probably not a good idea; consider the
case of a message with 10 recipients; the sending server will deliver the message to one recipient,
wait for its retry time, deliver to the second and so on. It could be a considerable time before all 10
recipients have received the mail. Add more recipients and the sender might even give up before
deliveries to all recipients are complete!

A more intelligent approach is the concept of “scan profiles”. With this approach, the first recipient in
a session defines the scan preferences for that session. Subsequent recipients in that session
which have the same preferences are accepted; others are deferred. Clearly, this is where the
number of variations on scanning offered has an important effect: if only two “scan profiles” are
offered, at most a mail will be delayed to some of its recipients by a time period equal to the retry
time of the sender. Usually, this will be acceptable especially when you consider that, depending on
your organisation, the percentage of messages with multiple recipients and where the recipients fall
into more than one “scanning profile” is likely to be small. However, if you have lots of “scan
profiles”, delays could potentially be more significant, and unacceptable.

+ See http://www.exim.org/pipermail/exim-users/Week-of-Mon-20031006/061151.html

A common usage scenario: Exim as a transparent front end

Another question which is raised very frequently is how to use Exim as a “transparent” front end to

an existing mail system, using Exim to do all policy rejections including content scanning and pass
the messages on to an existing internal system. (The same applies for those wanting to provide
“outsourced” content scanning).

The answer is very simple. All you need to do, typically, from a default configuration, is add the
destination domain(s) to the domainlist relay to domains, and then, for the specific domains
that are to be handled manually, have a router using the 'manualroute’ driver which routes them
manually to the “real” destination server. This router will, naturally, need to go before the general
“dnslookup” router. A simple, 'static' example might be as follows, if the domain
“somecompany.example.com” was to be routed to an internal mail server with IP address
192.168.0.1:

route scanned mail:
driver = manualroute
domains = somecompany.example.com
route data = 192.168.0.1
transport = remote smtp
no _more

A similar but more general method might contain a list of domains and their 'manualroute’
destinations in a DBM file:

route scanned mail:
driver = manualroute
domains = dbm;/etc/exim/domain routes
route data = ${lookup{$domain}dbm{/etc/exim/domain routes}}
transport = remote smtp
no _more

Conclusions

« Content scanning is a useful tool as part of a wider policy framework. Some kind of content
scanning will almost certainly bring benefits, but don't use it to the exclusion of other methods.

« Content scanning needs responsible planning and implementation to avoid amplifying the
problem or moving the burden to someone else. Scanning and rejection at SMTP time is highly
recommended and even if you choose not to use this method, please don't generate collateral
spam by bouncing mail you've accepted and then decided you don't want.

+ The Content Scanning Extension to Exim is integrated into the Exim distribution, widely used,
stable and powerful, and allows scanning at SMTP time for:

- Anti-virus purposes, using a variety of scanners both free and commercial. Remember to use
a daemon if possible!

+ Anti-spam purposes, using SpamAssassin.

+ File extension blocking — a “cheap”, relatively unintrusive and surprisingly effective “first-line”
of defence.

+ Regular expression blocking — but use with care! Blocking an entire mail based on one or two
phrases is risky — a system like SpamAssassin's scoring is more forgiving.
Almost anything else you can think of based on the content or MIME information contained
within a message

To summarise, with so many easy, powerful and free solutions, at the very least some basic content
scanning (e.g. file extension blocking) is highly recommended and can be achieved with modest
resources.

These notes, any corrections or addenda, and Spam & Virus Scanning mini-HOWTO available at:

http://www.timj.co.uk/computing/software/exim/

